ON CERTAIN FINAL MOTIONS IN THE n-BODY PROBLEM*

L.D. PUSTYL'NIKOV

Oscillatory motions and motions with capture are constructed in the n body problem $(n>3)$ of celestial mechanics, and it is shown that bounded, oscillatory and unbounded motions are possible as $t \rightarrow \infty$ and $t \rightarrow-\infty$ (t is the time) in any combinations.

Consider $n \geqslant 3$ material points (bodies) $\boldsymbol{P}_{0}, \boldsymbol{P}_{1}, \ldots, p_{n-1}$, interacting with each other according to Newton's law, with gravitational constant $\gamma>0$.

Definition 1. We shall say that a capture has taken place if all polar distances between the bodies are bounded as $t \rightarrow \infty(t$ is the time), while when $t \rightarrow-\infty$, one of the polar distances will tend to infinity.

Defintion 2. We shall call the motion oscillatory as $t \rightarrow \infty(f \rightarrow-\infty)$, if the closure of the corresponding half-trajectory in configurational space is not compact as $t \rightarrow \infty(t \rightarrow-\infty)$, but neither does it tend to infinity.

Fig. 1

In the case of $n=3$, the oscillatory motions and motions with capture were determined in /1-3/ for the special case of the three-body problem. The aim of the present paper is to extend the results to any $n>3$. Let us consider the following special case of the n-body problem. We will assume that the bodies p_{1}, \ldots, p_{n-1} of equal mass $m>0$ move, in a certain rectangular system of coordinates x, y, z in such a manner that, in the plane $z=$ const, they are always at the apices of a regular ($n-1$) -polygon whose centre lies on the z axis and the body P_{0} of mass m_{0} moves along the z axis (see the figure). We shall first assume that the mass $m_{0}=0$ and the bodies P_{1}, \ldots, p_{n-1} are distributed in the plane $=0$. Then a motion of these bodies will exist, during which they will describe periodic trajectories, while remaining at all times at the apices of the regular $(n-1)$-polygon with centre at the origin of coordinates /4, p.109/.

Definition 3. We shall say that the motion of the body p_{0}, belonging to the system of n bodies P_{0}, \ldots, P_{n-1}, belongs to the class of symmetric models with parameters n, m labbreviated to $S M(n, m)$ depending on the trajectories of the bodies $p_{1, \ldots} \ldots p_{n-1}$, provided that the following conditions hold.
1). When $k \neq 0$, the mass of the body P_{k} in $m>0$ and the mass of the body p_{0} is zero.
2). The bodies P_{1}, \ldots, P_{n-1} execute periodic motions in the plane $z=0$, at the same time remaining at the apices of the regular ($n-1$) polygon with centre at the point $0=(0,0,0$) so that their trajectories never pass through the point O and the body p_{0} moves along the z axis.

In Theorem 1 formulated below $x_{k}{ }^{(n)}(t, m), y k^{(n)}(t, m), z_{k}^{(n)}(t, m)$ are, respectively, the cocordinates x, y, z, at the instant t, of the body $P_{k}(k=0,1, \ldots, n-1)$ for an arbitrary Lrajectory of the class $S M(n, m)$ and λ_{n} are given by

$$
\lambda_{n}=\sum_{s=1}^{n-2}\left(\exp \left(2 \pi i \frac{s}{n-1}\right)-1\right)\left|\exp \left(2 \pi l \frac{s}{n-1}\right)-1\right|^{-3}
$$

which by virtue of their definition are real and negative.
Theorem 2. For any $n \geqslant 3$ and any class $S M(3, m)$ there exists a class $S M\left(n_{i} \lambda_{3} \lambda_{n}-\lambda_{m}\right)$, such that the functions $z_{0}{ }^{(3)}=z_{0}{ }^{(3)}(t, m), z_{0}{ }^{(n)}=z_{0}{ }^{\{n)}\left(t, \lambda_{3} \lambda_{n}{ }^{-1} m\right)$ satisfy the equations

$$
\partial^{2} z_{0}^{(3)} / \partial t^{2}=-Q_{3}\left(z_{0}^{(3)}, t\right), \quad \partial^{2} z_{0}^{(n)} / \partial t^{2}=-Q_{n}\left(z_{0}^{(n)}, t\right)
$$

and the following relation holds for any z, t :

$$
Q_{n}(z, t)=1 / 2(n-1) Q_{3}(z, t)
$$

Proof. Let us consider an arbitrary trajectory

$$
\left(x_{k}^{(n)}, y_{k}^{(n)}, z_{k}^{(n)}\right)=\left(x_{k}^{(n)}(t), y_{k}^{(n)}(t), z_{k}^{(n)}(t)\right) \quad(k=0, \ldots, n-1)
$$

for which the motion of the body P_{0} belongs to the class $S M(n, m)$. We introduce the complex variables $\xi_{k}=x_{k}{ }^{(n)}+i y_{k}^{(n)} \quad$ for $k=1, \ldots, n-1$. Then the equation of motion of the body P_{k} ($k=1, \ldots, n-1$) can be written in the complex form

$$
\begin{equation*}
\frac{\partial \xi_{k}}{\partial t^{2}}=m \gamma \sum_{i \neq \frac{1}{2}}\left(\xi_{l}-\xi_{k}\right) r_{k l}^{-3} \tag{1}
\end{equation*}
$$

and equations of motion of the body P_{0} can be written in the form

$$
\begin{equation*}
\frac{\partial^{s_{2}}(\mathrm{n})}{\partial t^{2}}=-m \gamma \sum_{k=1}^{n-1} z_{0}^{(n)_{r_{k 0}^{-3}}} \tag{2}
\end{equation*}
$$

where $r_{k!}(l=0, \ldots, n-1)$ is the distance between the bodies p_{k} and p_{l},
Let us now assume that $\xi_{k}=\xi_{k} q_{n}(k=1, \ldots, n-1), \xi_{l} \ldots, r_{n-1}$ are different complex numbers and $q_{n}=q_{n}(t, m)$ is a complex function different from zero. In this case Eqs. (1) and (2) become, respectively,

$$
\begin{align*}
\zeta_{k} \frac{\partial^{2} q_{n}}{\partial t^{2}}= & q_{n}\left|q_{n}\right|^{3} m \gamma \sum_{l=k}\left(\zeta_{l}-\zeta_{k}\right)\left|\zeta_{l}-\zeta_{k}\right|^{-3} \quad(k=1, \ldots, n-1) \tag{3}\\
& \frac{\partial^{2} z_{0}^{(n)}}{\partial t^{2}}=-m \gamma 2_{0}^{(n)} \sum_{k=1}^{n-1}\left(\left|q_{n}\right|^{2}\left|\zeta_{k}\right|^{2}+\left(z_{0}^{(n)}\right)\right)^{-2 / z} \tag{4}
\end{align*}
$$

According to (3) the expression

$$
\begin{equation*}
q^{1 / x} \bar{q}_{n}^{1 / 3} \partial^{2} q_{n} / \partial t^{2}=c \tag{5}
\end{equation*}
$$

where (\vec{q}_{n} is a complex conjugate of q_{n}), is independent of t, and

$$
\begin{equation*}
\zeta_{k} c=m \gamma \sum_{l \neq k}\left(\zeta_{l}-\zeta_{k}\right)\left|\zeta_{l}-\zeta_{k}\right|^{-3} \quad(k=1, \ldots, n-1) \tag{6}
\end{equation*}
$$

Assuming now that the complex numbers ξ_{k} represent the apices of a right ($n-1$-sided polygon inscribed in a circle of radius $r \neq 0$ with centre at the point 0 , we obtain the following relation for $k-1, \ldots, n-1$:

$$
\begin{equation*}
\zeta_{k}^{-1} \sum_{i \neq k}\left(\zeta_{l}-\zeta_{k}\right)\left|\zeta_{l}-\xi_{k}\right|^{-3}=\lambda_{n} r^{-3} \tag{7}
\end{equation*}
$$

where λ_{n} is a number introduced in the notation. Therefore, by virtue of (6) and (7), Eq. (5) will take the form

$$
\begin{equation*}
q_{n}^{1 / \dot{q}_{n}}{ }^{1 / * \partial^{2} q_{n} / \partial t^{2}=m \gamma \lambda_{n} r^{-3}} \tag{8}
\end{equation*}
$$

while Eq. (4) will become

$$
\begin{equation*}
\partial^{z_{2}(n)} / \partial r^{2}=-m \gamma_{0}^{(n)}(n-1)\left(\left|q_{n}\right|^{2} r^{2}+\left(z_{0}^{(n)} y^{2}\right)^{-3 / 4}=-Q_{n}\left(z_{0}^{(n)}, n\right)\right. \tag{9}
\end{equation*}
$$

If $n=3$ and the masses of the bodies P_{1} and P_{2} are both equal to M, then the points P_{1} and P_{2} will move in the $x y$ plane along periodic orbits, symmetrical about the origin of coordinates, and in this case the function $q_{3}=q_{3}(t, M)$ will satisfy, according to (8) and (9), the equation
and the function $z_{0}{ }^{(3)}=z_{0}{ }^{(3)}(t, M)$ will satisfy the equation

$$
\begin{equation*}
\partial^{2} x_{0}{ }^{(3)} / \partial l^{2}=-2 M \gamma_{z_{0}}^{(3)}\left(\left|q_{\mathrm{s}}\right|^{0} r^{2}+\left(z_{0}^{(3)}\right)^{2}\right)^{-3 / 2}=-Q_{3}\left(z_{0}^{(3)}, t\right) \tag{11}
\end{equation*}
$$

Replacing in Eq. (8) $q_{n}(t, m)$ by the function $q_{s}(t, M)$ we find, by virtue of (10), that Eq. (8) will hold if $m=M \lambda_{3} \lambda_{n}^{-1}$, and in this case we have $g_{n}(t, m)=q_{3}(t, M)$. Now equating Eqs. (9) and (11), we obtain the statement of Theorem 1.

Theorem 2. For any $n \geqslant 3$ there exists a class of $S M(n, m)$, in which capture and oscillatory motions take place, and bounded oscillatory and unbounded motions are possible in
any combination as $t \rightarrow \infty$ and $t \rightarrow-\infty$.
Proof. Theorem 2 was proved in /2, 3/ for the case $n=3$; these results were obtained as a corollary of analogous assertions concerning the solutions of the equation

$$
\begin{equation*}
\partial^{2} z / \partial t^{2}--Q(z, t) \tag{12}
\end{equation*}
$$

where $Q(z, t)$ is a smooth function 2π-periodic in t and satisfying certain general conditions (so that if the eccentricities of the orbits of the bodies \boldsymbol{P}_{1} and \boldsymbol{P}_{2} are small, the function $Q_{3}\left(z_{0}{ }^{(3)}, t\right)$ in (11) will satisfy the same conditions as $Q(z, t)$ in (12)).

If on the other hand $n>3$, then according to Theorem 1 a number $m>0$ equal to the masses of the bodies P_{1}, \ldots, P_{n-1} will exist such that the function $Q_{n}\left(x_{0}^{(n)}, t\right)$ in (9) will differ from the function $Q_{3}\left(z_{0}^{(3)}, t\right)$ by a constant factor $1 / 8(n-1)$. Therefore from $/ 2$, $3 /$ it follows that the function $Q_{n}\left(g_{0}^{(n)}, t\right)$ and Eq. (9) satisfy the same conditions as function
$Q(z, t)$ and Eq. (12) in the case of a potential well of finite depth. The most difficult to confirm is the condition, according to which two closed curves corresponding to parabolic motions have a transversal point of intersection as $t \rightarrow \pm \infty$, (condition 8° in /3/, p.22). The check for the function $Q_{n}(z, t)=1 / 2(n-1) Q(x, t)$ is carried out in literally the same manner as the check in the proof of Theorem 9 of $/ 3 /$ for the function $Q(z, t)$, since the constant factor $1 / 2(n-1)$ does not influence the proof itself.

Theorem 3. The assextion of Theorem 2 holds, if the mass m_{0} of the body p_{0} in the conditions of this theorem is sufficiently small and non-zero.

The proof of Theorem 3, taking Theorem 1 and 2 into account duplicates the proof of this theorem for the case $n=3 / 5 /$.

A solution of the problem of capture is the n-body problem of celestial mechanics $/ 6 /$ is a corollary of Theorems 2 and 3.

REFERENCES

1. SITNIKOV K.A., The existence of oscillating motions in the three-body problem. Dokl. Akad. Nauk SSSR, 133, 2, 1960.
2. ALEKSEYEV V.M., Dynamic quasirandom systems. II. Non-linear one-dimensional oscillations in a periodically perturbed field. Mat. Sbornik, 77, 4, 1968.
3. ALEKSEYEV V.M., Dynamic quadirandom systems. III. Quasirandom oscillations of one-dimensional oscillators. Mat. Sbornik, 78, 1, 1969.
4. ZIGEL K.L., Lectures on Celestial Mechanics. IL, Moscow, 1959.
5. ALEKSEYEV V.M., Quasirandom oscillations and qualitative problems of celestial mechanics. Ninth Mathematical Summer School. Lectures. Katsiveli, 1971. Akad. Nauk UkrSSR, Kiev, 1976.
6. LITTLEWOOD J.E., On the problem of n bodies. Meddel. Lunds Univ. mat. Sem., Suppl. M. Riesz, 1932.
