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OIJ CERTAIN FINAL HOTiONS IN THE a-BODY PROBLEM* 

L.D. PUSTYL'NIKOV 

Oscillatory motions and motions with capture are constructed in the n- 
body problem (n>3) of celestial mechanics, and it is shown that 
bounded, oscillatory and unbounded motions are possible as t-m and 
t---m@ is the time) in any combinations. 

Consider n>3 material points (bodies) P,,P,,...,P,_l, interacting with each other 
according to Newton's law, with gravitational constant y>O. 

Definition 1. We shall say that a capture has taken place if all polar distances between 
the bodies are bounded as 1-+a,Q is the time), while when t--r--m, one of the polar dis- 
tances will tend to infinity. 

Def~~~t~on 2. We shall call the motion oscillatory as t--r= (t-+-c+), if the closure of 
the corresponding half-trajectory in configurational space is not compact as t-.m(t--t--m), 
but neither does it tend to infinity. 

In the case of n=3, the oscillatory motions and 
motions with capture were determined in /l-3/ for the special 
case of the three-body problem. The aim of the present paper 
is to extend the results to any a> 3. Let us consider the 
following special case of the n-body problem. We will assume 
that the bodies P,, . . .P pfl-t of equal mass m>O move, in 
a certain rectangular system of coordinates I,~,z in such a 
manner that, in the plane Z= con&, they are always at the 
apices of a regular (n--)-polygon whose centre lies on the 
z axis and the body P, of mass m, moves along the z axis Isee 
the figure). We shall first assume that the mass %,=I0 
and the bodies P,,...,PM are distributed in the plane z=O. 
Then a motion of these bodies will exist, during which they 
will describe periodic trajectories, while remaining at all 

Fig.1 times at the apices of the regular (n- 1) -polygon with 
centre at the origin.of coordinates /4, p.l09/. 

Definition 3. We shall say that the motion of the body PO, belonging to the system of n 
bodies P,, . . ., PM, belongs to the class of symmetric models with parameters n, m (abbreviated 
to 5% (n,m)) depending on the trajectories of the bodies P,,....P,,, provided that the 
following conditions hold. 

1). When k#O, the mass of the body Pr in =>o and the mass of the body P, is zero. 
2). The bodies PI, . . . . Pwl execute periodic motions in the plane I= 0, at the sane 

time remaining at the apices of the regulas ( n--l)-polygon with centre at the point 0=(0,0,0) 
SO that their trajectories never pass through the point 0 and the body P, moves along the Z 
axis. 

In Theorem 1 formulated below zk(*) (t, m), ykCn) (t, ml. ZE(@ (t, m) are, respectively, the eo- 
cordinates 5,~,=, at the instant t, of the body Pk(k=O,f,. . .+ a--i) for an arbitrary 
trajectory of the class SM (n,m) and L are given by 

n-a 

h, = 2 (exp (2m *)-+on++1(3 
s=1 

which by virtue of their definition are real and negative. 

Theorem 1. For any ~22-3 and any class SM(3,m) there exists a class 5% (R,&&-'m), 
such that the functions 4(*) = z*@)(t, m), q,(") = zo(") (t, X&,-In) satisfy the equations 

a*zO(%%" = -f&(zO@), t), a%,(*)/ala = -Qn (tO("), t) 

and the following relation holds for any s, t: 
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Qn (2, t) = ‘1, (n - 1) Qa (2, 4 

Proof. Let us consider an arbitrary trajectory 

(@* @), $3 = (rfbn) ft), ~~)(f),Z~~)(~)) (K = 0, ‘ . *, It - 4) 

for which the motion of the body P, belongs to the class SM (n,m) We introduce the complex 
variables bk = Pk@) + ilk@) for k = 1,. . .,R - i. Then the equation of motion of the body Pk 
(k=i,...,n-1) can be written in the complex form 

and equations of motion of the body P D can be written in the form 

where ~1(1=0,...,n- 1) is the distance between the bodies Pk and Pt. 

Let us now assume that ek= Fk%fk = 1, . . ..n- 11, &, . . . . 6n-1 are different complex numbers 

and qR= gn 0, 4 is a complex function different from zero. In this case Eqs.(l) and (2) 
become, respectively, 

According 

where @,, is a 

to (3) the expression 
p’hjm’f*a+lat~ = E 

complex conjugate of q,,n), is independent of t, and 

(5) 

Assuming nowthat the complex numbers CR represent the apices of a right (a- $)-sided 
polygon inscribed in a circle of radius r+O with centre at the point 0, we obtain the 
following relation for k=i,...,n-t: 

(7) 

where &is a number introduced in the notation. Therefore, by virtue of (6) and (7), Eq.(5) 
will take the form 

*~‘fg~~“~~~~/at= = my&r-* (8) 

while Eq.(4) will become 

a%ppt = - ?q@~ (R - I) ( 1 q, I+* + (z~‘)*)“‘* = - Q, @’ *l) (9) 

If n=3 and the masses of the bodies P, and P1 are both equal to M, then the points PI 
and P. will move in the xg plane along periodic orbits, symmetrical about the origin of co- 
ordinates, and in this case the function q5= %(t, M) will satisfy, according to (8) and (91, 
the equation 

~~‘f~~~‘faa**~/ata = hykp WI 

and the function ~o(@= %0(8f(t, M) will satisfy the equation 

Cg@)/&’ = -2Mv~a’a!(~ gs pP + (s(s))y’l = -Qa (zo(3), t) W) 

Replacing in Eq.(8) q,,(t,m) by the function 7*(t.~) 
Eq.(8) will hold if 

we find, by virtue of (lo), that 
m=M+&-t, and in this case we have q,,(t,m)=g&,M). 

(9) and (111, we obtain the statement of Theorem 1. 
Now equating Eqs. 

TheOZWfZ 2. For any n>3 there exists a class of SM(n,m), 

oscillatory motions take place, 
in which capture and 

and bounded oscillatory and unbounded motions are possible in 
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any combination as tern and t--t-co. 

Proof. Theorem 2 was proved in /2, 3/ for the case R= 3; these results were obtained 
as a corollary of analogous assertions concerning the solutions of the equation 

@z / aP = -Q (z, t) (12) 

where Q (z, t) is a smooth function 2n-periodic in t and satisfying certain general conditions 
(so that if the eccentricities of the orbits of the bodies PI and P, are small, the function 

0s k,@) 4 in (11) will satisfy the same conditions as Q (2, t) in (12)). 
If on the other hand n>3, then according to Theorem 1 a number nt>O equal to the 

masses of the bodies P,,...,P,_l will exist such that the function Q,(e), t) in (9) will 

differ from the function Qs($)~ t) by a constant factor '/*(n- 1). Therefore from /2, 3/ it 
follows that the function Q,,($),t) and Eq.(9) satisfy the same conditions as function 

Q (2, t) and Eq.(12) in the case of a potential well of finite depth. The most difficult to 
confirm is the condition, according to which two closed curves corresponding to parabolic 
motions have a transversal point of intersection as t--r*? (condition 8" in /3/, p.22). 
The check for the function Qnb.t) =V,(m- i)Q(z, t) is carried out in literally the same 
manner as the check in the proof of Theorem 9 of /3/ for the function Q (2, t), since the 
constant factor l/n(n-l) does not influence the proof itself. 

Theorem 3. The assertion of Theorem 2 holds, if the mass m, of the body PO in the 
conditions of this theorem is sufficiently small and non-zero. 

The proof of Theorem 3, taking Theorem 1 and 2 into account duplicates the proof of this 

theorem for the case n=3 /5/. 

A solution of the problem of capture is the n-body problem of celestial mechanics /6/ 
is a corollary of Theorems 2 and 3. 
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